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Abstract 

A collection of user behaviors approach has been shown effectively in 
addressing the heterogeneous connections among all the social networks. in 
every social network it involves in multi actors and huge size of data. To 
make this effective we can propose a model to collect the behavior of users. 
To make this very effective in addressing the data we use edge-centric 
clustering scheme to extract the sparse social dimensions. This can handle 
thousand of networks and the users who involved in it. It can compare the 
performance to the other dimension mechanisms. 

Keywords: Heterogeneous Connections, Dimension Mechanism, 
Collective Behavior, Social Dimensions, Sparse Dimensions. 

Introduction 

The curse of dimensionality refers to various phenomena that arise when analyzing and 
organizing data in high- dimensional spaces (often with hundreds or thousands of dimensions) 
that do not occur in low-dimensional settings such as the three-dimensional physical space of 
everyday experience. There are multiple phenomena referred to by this name in domains such as 
numerical analysis, sampling, combinatorics, machine learning, data mining, and databases. The 
common theme of these problems is that when the dimensionality increases, the volume of the 
space increases so fast that the available data become sparse. This sparsity is problematic for any 
method that requires statistical significance. In order to obtain a statistically sound and reliable 
result, the amount of data needed to support the result often grows exponentially with the 
dimensionality. Also organizing and searching data often relies on detecting areas where objects 
form groups with similar properties; in high dimensional data however all objects appear to be 
sparse and dissimilar in many ways which prevents common data organization strategies from 
being efficient. Typically, the connections in social media networks. are not homogeneous. 
Different connections are associated with distinctive relations. For example, one user might 
maintain connections simultaneously to his friends, family, college classmates, and colleagues. 
This relationship information, however, is not always fully available in reality. Mostly, we have 
access to the connectivity information between users, but we have no idea why they are 
connected to each other. This heterogeneity of connections limits the effectiveness of it is shown 
to be effective in addressing this heterogeneity. 
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The framework suggests a novel way of network classification: first, capture the latent 
affiliations of actors by extracting social dimensions based on network connectivity, and next, 
apply extant data mining techniques to classification based on the extracted dimensions. In the 
initial study, modularity maximization [3] was employed to extract social dimensions. The 
superiority of this framework over other representative relational learning methods has been 
verified with social media data. The original framework, however, is not scalable to handle 
networks of colossal sizes because the extracted social dimensions are rather dense. In social 
media, a network of millions of actors is very common. With a huge number of actors, extracted 
dense social dimensions cannot even be held in memory, causing a serious computational 
problem. Sparsifying social dimensions can be effective in eliminating the scalability bottleneck. 
In this work, we propose an effective edge-centric approach to extract sparse social dimensions 
[4]. We prove that with our proposed approach, sparsity of social dimensions is guaranteed. 
Extensive experiments are then conducted with social media data. The framework based on 
sparse social dimensions, without sacrificing the prediction performance, is capable of 
efficiently handling real-world networks of millions of actors. 

Collective Behaviors 

It explain our tendency to link with one another in ways that confirm, rather than test, our core 
beliefs. Essentially, we are more likely to connect to others who share certain similarities with us. 
This phenomenon has been observed not only in the many processes of a physical world, but 
also in online systems [7], [8]. Homophily results in behavior correlations between connected 
friends. In other words, friends in a social network tend to behave similarly. The recent boom of 
social media enables us to study collective behavior on a large scale. Here, behaviors include a 
broad range of actions: joining a group, connecting to a person, clicking on an ad, becoming 
interested in certain topics, dating people of a certain type, etc. In this work, we attempt to 
leverage the behavior correlation presented in a social network in order to predict collective 
behavior in social media. Given a network with the behavioral informa-tion of some actors, how 
can we infer the behavioral outcome of the remaining actors within the same network? Here, we 
assume the studied behavior of one actor can be described with K class labels fc1 . . . cK g. Each 
label, ci, can be 0 or 1. For instance, one user might join multiple groups of interest, denotes that 
the user subscribes to group i, otherwise. Likewise, a user can be interested in several topics 
simultaneously, or click on multiple types of ads. One special case is K ¼ 1, indicating that the 
studied behavior can be described by a single label with 1 and 0. For example, if the event is the 
presidential election, 1 or 0 indicates whether or not a voter voted for Barack Obama. The 
problem we study can be described formally as follows. 

Table 1.Social Dimension Representation 
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It should be noted that this problem shares the same spirit as within-network classification [9]. It 
can also be considered as a special case of semi-supervised learning [10] or relational learning 
[11] where objects are connected within a network. Some of these methods, if applied directly to 
social media, yield only limited success [2]. This is because connections in social media are 
rather noisy and heterogeneous. In the next section, we will discuss the connection heterogeneity 
in social media, review the concept of social dimension, and anatomize the scalability limitations 
of the earlier model proposed in [2], which provides a compelling motivation for this work. 

Social Dimensions 

We change intellectual gears when we confront Blumer's final form of collective behavior, the 
social movement. He identifies several types of these, among which are active social movements 
such as the French Revolution and expressive ones such as Alcoholics Anonymous. An active 
movement tries to change society; an expressive one tries to change its own members. The 
social movement is the form of collective behavior which satisfies least well the first definition 
of it which was offered at the beginning of this article. These episodes are less fluid than the 
other forms, and do not changes as often as other forms do. Furthermore, as can be seen in the 
history of the labor movement and many religious sects, a social movement may begin as 
collective behavior but over time become firmly established as a social institution. Connections 
in social media are not homogeneous. People can connect to their family, colleagues, college 
classmates, or buddies met online. Some relations are helpful in determining a targeted behavior 
(category) while others are not. This relation-type information, however, is often not readily 
available in social media. A direct application of collective inference [9] or label propagation 
[12] would treat connections in a social network as if they were homogeneous. To address the 
heterogeneity present in connections, a frame-work (SocioDim) [2] has been proposed for 
collective behavior learning. 

Social dimensions extracted according to soft clustering, such as modularity maximization and 
probabilistic methods, are dense. Suppose there are 1 million actors in a network and 1,000 
dimensions are extracted. If standard double precision numbers are used, holding the full matrix 
alone requires 1 M _ 1 K _ 8 ¼ 8 G memory. This large- size dense matrix poses thorny 
challenges for the extraction of social dimensions as well as subsequent discrimi-native learning. 
A key observation is that actors of the same affiliation tend to connect with each other. For 
instance, it is reason-able to expect people of the same department to interact with each other 
more frequently. Hence, to infer actors’ latent affiliations, we need to find out a group of people 
who interact with each other more frequently than at random. This boils down to a classic 
community detection problem. Since each actor can get involved in more than one affiliation, a 
soft clustering scheme is preferred. 
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Example: 

 
Figure 1. 

PageRank scores, can be done very efficiently, computing thousands of eigenvectors or even 
more for a mega-scale network becomes a daunting task. Networks in social media tend to 
evolve, with new members joining and new connections occurring between existing members 
each day. This dynamic nature of networks entails an efficient update of the model for collective 
behavior prediction. Efficient online updates of eigenvectors with expanding matrices remain a 
challenge. Consequently, it is imperative to develop scalable methods that can handle large-scale 
networks efficiently without extensive memory require- ments. Next, we elucidate on an edge-
centric clustering scheme to extract sparse social dimensions. With such a scheme, we can also 
update the social dimensions efficiently when new nodes or new edges arrive. 

Sparse Social Dimensions 

In this section, we first show one toy example to illustrate the intuition of communities in an 
“edge” view and then present potential solutions to extract sparse social dimensions. 

A. Communities in an Edge-Centric View 

Though SocioDim with soft clustering for social dimension extraction demonstrated promising 
results, its scalability is limited. A network may be, It seems reasonable to state that the number 
of affiliations one user can participate in is upper bounded by his connections. Consider one 
extreme case that an actor has only one connection. It is expected that he is probably active in 
only one affiliation. It is not necessary to assign a nonzero score for each of the many other 
affiliations. Assuming each connection represents one involved affiliation, we can expect the 
number of affiliations an actor has is no more than that of his connections. Rather than defining a 
community as a set of nodes, we redefine it as a set of edges. Thus, communities can be 
identified by partitioning edges of a network into disjoint sets. 
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Table 2.Social Dimension Table 

 

Theorem 1: Suppose k social dimensions are extracted from a network with m edges and n 
nodes. The density (proportion of nonzero entries) of the social dimensions based on edge 
partition is bounded. Moreover, for many real-world networks whose node degree follows a 
power law distribution. 

B. Edge Partition via Line Graph Partition 

In order to partition edges into disjoint sets, one way is to look at the “dual” view of a network, 
i.e., the line graph [15]. We will show that this is not a practical solution. In a line graph L(G), 
each node corresponds to an edge in the original network G, and edges in the line graph represent 
the adjacency between two edges in the original graph. The line graph of the toy example is 
shown in Fig. 4. For instance, eð1; 3Þ and eð2; 3Þ are connected in the line graph as they share 
one terminal node 3. Given a network, graph partition algorithms can be applied to its 
corresponding line graph. The set of communities in the line graph corresponds to a disjoint edge 
partition in the original graph. Recently, such a scheme has been used to detect overlapping 
communities [16], [17]. It is, however, prohibitive to construct a line graph for a mega-scale 
network. We notice that edges connecting to the same node in the original network form a clique 
in the corresponding line graph. For example, edges eð1; 3Þ, eð2; 3Þ, and eð3; 4Þ are all 
neighboring edges of node 3 in Fig. 1. Hence, they are adjacent to each other in the line graph 
in Fig. 4, forming a clique. This property leads to many more edges in a line graph than in the 
original network. 

Theorem3: Let denote the exponent of a power law degree distribution for a given network, n the 
size of the network, and M the number of connections in its corresponding line graph. The 
divergence of the expectation tells us that as we go to larger and larger data sets, our estimate of 
number of connections with respect to the original network size will increase without bound. As 
we have mentioned, the majority of large-scale networks follow a power law with _ lying 
between 2 and 3. Consequently, the number of connections in a line graph can be extremely 
huge. Take the aforementioned YouTube network as an example again. It contains 
approximately 1 million nodes and 3 million links. Its resultant line graph will contain 4,436, 
252,282 connections, too large to be loaded into memory. Recall that the original motivation to 
use sparse social dimensions is to address the scalability concern. Now, we end up dealing with a 
much larger sized. 
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Figure 2.Each node in the line graph corresponds to an edge in the original graph 

C. Edge Partition via Clustering Edge Instances 

In order to partition edges into disjoint sets, we treat edges as data instances with their terminal 
nodes as features. For instance, we can treat each edge in the toy network in Fig1 as one instance, 
and the nodes that define edges as features. This results in a typical feature-based data format as 
in Table3. Then, a typical clustering algorithm like k-means clustering can be applied to find 
disjoint partitions. One concern with this scheme is that the total number of edges might be too 
huge. Owing to the power law distribution of node degrees presented in social networks, the 
total number of edges is normally linear, rather than square, with respect to the number of 
nodes in the network. That is, m ¼ OðnÞ as stated in the following theorem. 

Theorem 4: The total number of edges is usually linear, rather than quadratic, with respect to the 
number of nodes in the network with a power law distribution. In particular, the expected number 
of edges is given as Still, millions of edges are the norm in a large-scale network. Direct 
application of some existing k-means implementation cannot handle the problem. For example, 
the k-means code provided in the Matlab package requires the computation of the similarity 
matrix between all pairs of data instances, which would exhaust the memory of normal PCs in 
seconds. Therefore, an implementation with online computation is preferred. On the other hand, 
the data of edge instances are quite sparse and structured. As each edge connects two nodes, the 
corresponding edge instance has exactly only two nonzero features as shown in Table 3. This 
sparsity can help accelerate the clustering process if exploited wisely. We conjecture that the 
centroids of k- means should also be feature sparse. Often, only a small portion of the data 
instances share features with the centroid. Hence, we just need to compute the similarity of the 
centroids with their relevant instances. In order to efficiently identify instances relevant to one 
centroid, we build a mapping from features (nodes) to instances (edges) beforehand. Once we 
have the mapping, we can easily identify the relevant instances by checking the nonzero features 
of the centroid. 
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D. Regularization on Communities 

The extracted social dimensions are treated as features of nodes. Conventional supervised 
learning can be conducted. In order to handle large-scale data with high dimensionality and vast 
numbers of instances, we adopt a linear SVM. 

Table 3.Statistics of Social Media Data 

 

In summary, we conduct the following steps to learn a model for collective behavior. Given a 
network (say, Fig. 1), we take the edge-centric view of the network data (Table 3) and partition 
the edges into disjoint sets (Fig. 2). 

Based on the edge clustering, social dimensions can be constructed (TableII). Certain 
regularizations can be applied. Then, discriminative learning and prediction can be accomplished 
by considering these social dimensions as features. The detailed algorithm is summarized in Fig. 
6. 

Experiment Setup 

In this section, we present the data collected from social media for evaluation and the baseline 
methods for comparison. 

A. Social Media Data 

Two data sets reported in [2] are used to examine our proposed model for collective behavior 
learning. The first data set is acquired from BlogCatalog,3 the second from a popular photo 
sharing site Flickr.4 Concerning behavior, following [2], we study whether or not a user joins a 
group of interest. Since the BlogCatalog data do not have this group information, we use blogger 
interests as the behavior labels. Both data sets are publicly available at the first author’s 
homepage. To examine scalability, we also include a mega-scale network5 crawled from 
YouTube.6 We remove those nodes without connections and select the interest groups with 500 þ 
subscribers. Some statistics of the three data sets can be found in Table 4. 

B. Baseline Methods 

As we discussed in Section 4.2, constructing a line graph is prohibitive for large-scale networks. 
Hence, the line- graph approach is not included for comparison. Alternatively, the edge-centric 
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clustering (or EdgeCluster) in Section 4.2 is used to extract social dimensions on all data sets. 
We adopt cosine similarity while performing the clustering. Based on cross validation, the 
dimensionality is set to 5,000, 10,000, and 1,000 for BlogCatalog, Flickr, and YouTube, 
respectively. A linear SVM classifier [18] is then exploited for discriminative learning. Another 
related approach to finding edge partitions is bi-connected components [19]. Bi-connected 
components of a graph are the maximal subsets of vertices such that the removal of a vertex from 
a particular component will not disconnect the component. Essentially, any two nodes in a bi-
connected component are connected by at least two. 

Node Cluster: Note that our prediction problem is essentially multi-label. It is empirically 
shown that thresholding can affect the final prediction performance drastically [21], [22]. For 
evaluation purposes, we assume the number of labels of unobserved nodes is already known, and 
check whether the top-ranking predicted labels match with the actual labels. Such a scheme has 
been adopted for other multilabel evaluation works [23]. We randomly sample a portion of nodes 
as labeled and report the average performance of 10 runs in terms of Micro-F1 and Macro-F1 
[22]. 

Experiment Results 

In this section, we first examine how prediction performances vary with social dimensions 
extracted following different approaches. Then, we verify the sparsity of social dimensions and 
its implication for scalability. We also study how the performance varies with dimensionality. 
Finally, concrete examples of extracted social dimensions are given. 

Table 4.Sparsity Comparison on BlogCatalog Data with 10,312 Nodes 

 

Table 5.Sparsity Comparison on Flickr Data with  80,513 Nodes 
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A. Scalability Study 

As we have introduced in Theorem 1, the social dimensions constructed according to edge-
centric clustering are guar-anteed to be sparse because the density is upper bounded by a small 
value. Here, we examine how sparse the social dimensions are in practice. We also study how the 
computation time (with a Core2Duo E8400 CPU and 4 GB memory) varies with the number of 
edge clusters. The computation time, the memory footprint of social dimensions, their density, 
and other related statistics on all three data sets are reported in Tables 8, 9, and 10. Concerning 
the time complexity, it is interesting that computing the top eigenvectors of a modularity matrix 
is actually quite efficient as long as there is no memory concern. This is observed on the Flickr 
data.  

 
Figure 4. 

However, when the network scales to millions of nodes (YouTube), modularity maximization 
becomes difficult (though an iterative method or distributed computation can be used) due to its 
excessive memory requirement. On the contrary, the EdgeCluster method can still work 
efficiently as shown in Table 10. The computation time of EdgeCluster for YouTube is much 
smaller than for Flickr, because the YouTube network is extremely sparse. The number of edges 
and the average degree in YouTube are smaller than those in Flickr, as shown in Table 4. 
Another observation is that the computation time of EdgeCluster does not change much with 
varying numbers of clusters. No matter how many clusters exist, the computa-tion time of 
EdgeCluster is of the same order. This is due to the efficacy of the proposed k-means variant in 
Fig. 5. In the algorithm, we do not iterate over each cluster and each centroid to do the cluster 
assignment, but exploit the sparsity of edge-centric data to compute only the similarity of a 
centroid and those relevant instances. This, in effect, makes the computational cost independent 
of the number of edge clusters. 

B. Sensitivity Study 

Our proposed EdgeCluster model requires users to specify the number of social dimensions 
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(edge clusters). One question which remains to be answered is how sensitive the performance is 
with respect to the parameter. We examine all three data sets, but find no strong pattern to 
determine optimal dimensionality. Due to the space limit, we include only one case here. Fig. 7 
shows the Macro-F1 performance change on YouTube data. The performance, unfortunately, is 
sensitive to the number of edge clusters. It thus remains a challenge to determine the parameter 
automatically. 

C. Regularization Effect 

In this section, we study how EdgeCluster performance varies with different regularization 
schemes. Three different regularizations are implemented: regularization based on community 
size, node affiliation, and both (we first apply community size regularization, then node 
affiliation). The results without any regularization are also included as a baseline for comparison. 
In our experiments, the community size regularization penalty function is set to (log(jCijÞÞ2, and 
node affiliation regularization normalizes the summation of each node’s community 
membership to 1 As shown in Fig. 8, regularization on both community size and node affiliation 
consistently boosts the performance on Flickr data. We also observe that node affiliation 
regularization significantly improves performance. It seems like community-size reg-ularization 
is not as important as the node-affiliation regularization. Similar trends are observed in the other 
two data sets. We must point out that, when both community-size regularization and node 
affiliation are applied, it is indeed quite similar to the tf-idf weighting scheme for representation 
of documents [24]. Such a weighting scheme actually can lead to a quite different performance 
in dealing with social dimensions extracted from a network. 

Related Work 

Classification with networked instances are known as within-network classification [9], or a 
special case of relational learning [11]. The data instances in a network are not independently 
identically distributed (i.i.d.) as in conventional data mining. To capture the correlation between 
labels of neighboring data objects, typically a Markov dependency assumption is assumed. That 
is, the label of one node depends on the labels (or attributes) of its neighbors. Normally, a 
relational classifier is constructed based on the relational features of labeled data, and then an 
iterative process is required to determine the class labels for the unlabeled data. The class label 
or the class membership is updated for each node while the labels of its neighbors are fixed 
However, a network tends to present heterogeneous relations, and the Markov assumption can 
only capture the local dependency. Hence, researchers propose to model network connections or 
class labels based on latent groups [20], [26]. A similar idea is also adopted in [2] to differentiate 
heterogeneous relations in a network by extracting social dimensions to represent the potential 
affiliations of actors in a network. The authors suggest using the community membership of a 
soft clustering scheme as social dimensions. 

The extracted social dimensions are treated as features, and a support vector machine based on 



              International Journal of Emerging Trends in Information & Knowledge Management 
Vol. 4, Issue 1 – 2020 

ISSN: 2581-3579 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 49  

that can be constructed for classification. It has been shown that the proposed social dimension 
approach significantly out performs representative methods based on collective inference. There 
are various approaches to conduct soft clustering for a graph. Some are based on matrix 
factorization, like spectral clustering [27] and modularity maximization [3]. Probabilistic 
methods are also developed [28], [29]. Please refer to [30] for a comprehensive survey. A 
disadvantage with soft clustering is that the resultant social dimensions. 

Conclusions and Future Work 

It is well known that actors in a network demonstrate correlated behaviors. In this work, we aim 
to predict the outcome of collective behavior given a social network and the behavioral 
information of some actors. In particular, we explore scalable learning of collective behavior 
when millions of actors are involved in the network. Our approach follows a social-dimension-
based learning framework. 
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