
International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 74

Exploring Security Advancements in Distributed
Systems through Artificial Intelligence and Machine
Learning Approaches: A Comprehensive Review
Narinder Pal Singh1, Rajiv Anand1
1Jawaharlal Nehru Technological University, Kakinada.

Abstract

The evaluation of intrusion and malware detection systems in network security encounters
challenges due to the scarcity of publicly available and current datasets. This paper introduces
the HIKARI-2021 dataset, encompassing encrypted simulated attacks and benign traffic,
addressing content and process requirements for dataset development. The outlined
requirements aim to facilitate future dataset creation, and both the HIKARI-2021 dataset and
its creation methodology are made publicly accessible.

Focusing on a crucial aspect of intrusion and malware activities—specifically, the
distribution and installation of programs on a large number of victim computers—this study
delves into drive-by download attacks. These attacks entice victims to websites initiating
exploits against their web browsers, leading to the automatic download and execution of
malicious programs through injected shellcode. While prior research primarily concentrated
on identifying the drive-by exploit stage and subsequent network traffic, the intermediary
phase of malware download has received limited attention.

Our system demonstrates notable capabilities in identifying malicious applications, achieving
a high accuracy rate (97.69 percent true positive) and a low false positive rate (0.43 percent).
Importantly, this detection proficiency is observed weeks or even months before the
appearance of identified threats on public blacklists.

Introduction

In the field of Intrusion and Malware Detection Systems (IMDS), assessing advancements in
malicious detection technologies poses challenges. Machine learning-based IMDS relies on
training datasets, but obtaining a reliable dataset for comparative analysis proves challenging.
The difficulty lies in the absence of comprehensive documentation of approaches, a lack of
standardized comparison methodology, and limited critical aspects like surface labels and
publicly accessible 3D vision traffic [1][2]. Moreover, the prevalence of encrypted network

International Journal of Recent Advances in
Information Technology & Management

http://eurekajournals.com/ITM.html
ISSN: 2581-3609

http://eurekajournals.com/ITM.html

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 75

traffic for communication security and privacy adds complexity, as only a few databases
remain unencrypted.

A significant challenge for attackers is the widespread installation of malware applications on
target PCs. Social engineering, such as sending enticing email messages to victims, is one
method; however, it requires victim participation and is often ineffective. An alternative,
more potent strategy involves enticing individuals to visit web pages initiating attacks against
browser vulnerabilities, known as drive-by downloads. This approach requires no human
involvement, allowing malware to be loaded and activated on the victim's PC without their
awareness. Drive-by downloads have emerged as a primary method for attackers to propagate
malware due to their effectiveness and stealthiness, forming the focus of this research.

Current datasets lack the necessary encrypted trails and practicality to construct a
comprehensive model for identifying new threats. While some research addresses encrypted
traffic, with a focus on areas like traffic classification and analysis [3], available datasets are
limited and not publicly accessible due to data sensitivity [4].

Figure 1: A generic IMDS pipeline based on Machine Learning.

Benchmark datasets play a crucial role in the evaluation and comparison of various Intrusion
Detection Systems (IDS). IDS are categorized into three types based on detection methods:
signature-based, anomaly-based, and a hybrid of the two. The widely used KDD99 dataset is
employed by all three types to assess their performance. In the signature-based approach [5],
the emphasis is on automating signature generation, utilizing a pattern-matching method to

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 76

detect and match with signatures from a database. Although this method is highly accurate
with minimal false alarms, it cannot identify unknown attacks. On the other hand, the
anomaly-based approach [6] focuses on detecting deviations from the typical profile,
potentially identifying unknown threats by comparing abnormal traffic to normal patterns.
However, this approach tends to have a higher false alarm rate.

Contemporary malware security solutions predominantly concentrate on the initial and later
stages of infection. Much effort is dedicated to detecting pages with vulnerabilities for drive-
by downloads during the early phases of exploitation, preventing browsers from accessing
malicious websites. Honeyclients, for instance, actively scan the internet to identify pages
containing attack code, subsequently adding them to domain and URL blacklists. In response,
attackers have adopted strategies such as rapidly cycling through malicious domains,
rendering blacklists ineffective. Additionally, to evade detection, attackers have begun
fingerprinting honey clients and employing code obfuscation techniques.

The following are the paper's main contributions:

● We describe a new method for detecting malware downloads and installations via web
requests. Our technique works on huge networks and detects the characteristics of
malware distribution networks that are organised. Nazca can detect previously undetected
malware and is unaffected by content obfuscation because our technique does not analyze
the downloaded programmes.

● We describe a three-step technique for detecting malware downloads. The first step is to
get a summary of HTTP request metadata. Then we seek for suspicious candidate
connections with features that are out of the ordinary for benign downloads. These
capabilities identify malware creators' evasive attempts to escape detection by traditional
security systems. Finally, we combine candidates to identify potentially dangerous
activity clusters.

● We compare seven days of data from a commercial ISP against prominent blacklists to
see how good our technique is at detecting malware downloads.

Related Work

Because the current study focuses on defence against adversarial malware instances, we
review analogous former studies in four categories: ensemble learning, input prepossessing,
adversarial training/regularization, and DAE based representation learning.

By diversifying the building-block models, ensemble learning can minimise generalization
error. Bagging and random subspace approaches, as demonstrated by Biggio et al. [18], [19],
can improve the resilience of linear models against evasion attempts. To identify adversarial
malware, Smutz and Stavrou [20] suggest utilising the confidence score provided by random
forest classifiers. The durability of ensemble DNNs against evasion attempts is investigated
by Stokes et al. [21]. We use the random subspace approach and randomly initialised
parameters to diversify the building- block models in this study.

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 77

To reduce the amount of perturbations applied to the original data, input prepossessing
modifies the input's representation. For example, in both the training and test phases, Random
Feature Nullification (RFN) cancels features at random [12], HashTran [13] employs
municipality hashing to reduce tiny perturbations, and DroidEye [14] quantizes binary
representation via count featurization. Binarization, which is inspired by the concept of feature
pinching, is used to reduce disturbance in our system.

Foster learning adds adversarial instances to the training data. [5], [12], [13], [26], [27] are
only a few examples of heuristic training procedures that have been developed. These
solutions, on the other hand, are usually targeted at certain evasion techniques and are
ineffective against others. In addition, researchers suggest using adversarial training with the
ideal attack, which is similar to the worst-case situation and might lead to classifiers that are
resistant to non- optimal assaults [7], [28]. In our system, we use a gradient descent approach
to find the best attack while using a closest neighbour search to fulfil the need of discrete
inputs.

Adversarial regularisation is an adversarial training strategy that seeks to train a model using
minimally disrupted data while keeping functionality. Small perturbations, intuitively, help
DNN models generalise [13], [27], [29], [30], [31]. Because the defender may not know the
attacker's manipulation set in the context of malware detection, this technique may be
beneficial.

DAE aids in the learning of strong representations [32], [33]. DAE is proposed by Li et al.
[23] for identifying adversarial malware instances. DAE is used in our system to learn a
resilient representation that is unaffected by disturbances.

Requirement Datasets

Despite the fact that the authors of ISCX [8, UGR'16 [10], and CICIDS-2017 [13] all supply
a new dataset and state major requirements for it, their research aims and scope differ.
Unlike their prior dataset, our effort is a supplement to fill in the gaps left by the previous
requirement.

IDS Evaluation Datasets Requirement

Distinct datasets, on the whole, have different assets and requirements. By using a systematic
profile to produce the dataset, Shiravi et al. [8] focused on correct labelling in the dataset.
They claimed that network traffic should be as realistic as possible, which necessitated a
comprehensive capture in a genuine network. It will have an influence on anonymity and may
result in privacy concerns. Fernandez et al. [10] only supplied flow data and concentrated on
the capturing time. Furthermore, if the malicious communication is provided via an encrypted
protocol, such as HTTPS, a flow format with just 5 tuples is insufficient and requires extra
characteristics. We discovered that Sharafaldin et al. [52] had a long list of prerequisites for
creating an IDS dataset. Unfortunately, the traffic they create is generated on an emulated
network that lacks a genuine environment. Furthermore, their research lacked information on
ground-truth and how labelling works, and so has the potential to be incorrect and

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 78

untrustworthy for analysis. Cordero et al. [59] developed an ID2T tool, and we found that
their criteria are more realistic. They divided the needs into two categories: functional and
non- functional. Non-functional requirements describe a collection of criteria that must be
met in order for a dataset to be useful. Functional requirements focus on what is required to
create datasets, but non-functional requirements specify a set of criteria that must be met in
order for a dataset to be useful.

Comparison of Existing Datasets to the Above-mentioned Requirements

We couldn't find any information regarding the UMass dataset's anonymity, thus no indicator
was supplied. In terms of the IMPACT dataset, this platform offers a range of datasets, some
anonymised and others not. In one area of the CICIDS-2017 dataset, there are examples of
encrypted communication with benign and attack characteristics. Four conclusions may be
drawn from the above comparisons. To get started, you'll need encrypted samples of both
benign and malicious transmission. We noticed that [15] has information in their dataset on
whether traffic is anomalous or suspicious, but it is reliant on anomaly detectors. The study
did not include the payload from the packet traces. The possibilities of IDS are limited since
many assaults cannot be detected by network traffic with just 5-tuple characteristics. In
addition, traffic from benign and SSH attack profiles is included in [13]'s data.

While this is beneficial, the attack's diversity should be expanded to encompass applications
such as browser attacks and different protocols, such as HTTPS, which we did not find in
their dataset. Second, we found that the great majority of datasets aren't anonymized. This is
most likely due to the fact that their testing beds are in a controlled environment or that they
have authorisation to operate. The ideal option is the first, which means that the traffic will
have more phoney traffic and less actual traffic. The latter is preferred if they can protect
their privacy. Furthermore, anonymizing traffic can protect privacy; yet, anonymizing traffic
substantially may diminish the analysis' findings [8].Third, we noticed that most datasets
lacked ground- truth data and background traffic, confining the inquiry to their model. Fourth,
there must be a way to generate a new dataset.

This is owing to the fact that the network environment is always changing. It is critical to
understand how to develop new datasets with practical implementation so that researchers
may create their own datasets and analyse them in their own environments. This technique
may be used as a guideline for IDS researchers to create a useful dataset.

Configuration of the Network for Dataset Generation

Figure 2 depicts our network design, which places the attackers on a different network than
the victims. The data we collected was in pcap format. The following is the most significant
aspect of this configuration:

 CentOS 7 and CentOS 8 are used to run the attacker network, which consists of two
computers. The attackers' machines do not need to meet any precise criteria as long as
they can execute Bash and Python programmes. From Miniconda 3, the Python version is
3.8.8.

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 79

 One Debian 8 system running Joomla3.4.3 and two Debian 9 workstations running
Drupal 8.0 and WordPress 5.0 are deployed in the victim network. There are no special
requirements for the OS version of the victim network, and default themes and plugins
are used by the three distinct Content Management Systems (CMS), such as Drupal,
WordPress, and Joomla.

Because of their popularity, these three open-source CMSs were chosen. Background traffic
is collected by these computers.

Figure No. 2: Configuration of the Network for Dataset Generation

It's critical to collect data that is realistic. We recorded all background traffic in the victim
network without using any filters or firewalls. As a result, there's a chance that background
traffic contains malicious traffic or assaults. We anonymised various pieces of data, including
the IP address and the payload, to protect privacy without compromising the analysis' results.

To develop the benign profile, we looked into using a benign profile that was similar to
human behaviour. To accomplish so, we used Selenium [12], a headless browser that runs
Google Chrome and Mozilla Firefox. These two browsers resemble individuals by browsing
random websites, registering as a user, logging in, sending an article to the intended victim's
server, and then logging out. We used a variety of factors, such as user-agent and random
delay, to make each set of activities behave like a person and prevent being identified as a bot
or web spider. Alexa's top 1 million visitors [13] provided the website URLs. The benign
profile, which duplicates innocuous traffic, was created using a Python script.

The attack traffic is created in two ways: first, by targeting a specific page for CMS user
login, and second, by scanning for vulnerabilities in the CMSs. The HTTPS protocol is used
to deliver both assaults. The assaults are carried out on several days and in various settings
(details in Section 4.5). The following are the different sorts of attacks:

 The brute force assault is the most well- known method for breaking passwords. The
attacker frequently attempts all possible combinations using a dictionary of probable
common passwords [64] over and over again to get access to the target. We created a
script that simulates a brute force assault and delivers it through a browser. We added a

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 80

user with the role of admin and a password that we chose at random from [64] to each of
the three CMSs. The goal is to ensure that the brute force attack goes off without a
hitch.

 Brute force attack using two alternative attack vectors: the first utilises the browser as the
attack vector, while the second employs XMLRPC as the attack vector. We created a
script that uses XMLRPC to acquire access to valid credentials.

 Vulnerability probing is another term for probing. This software examines web
applications for vulnerabilities, such as Joomla, WordPress, and Drupal. Vulnerability
scanning software is freely accessible. The programmes employed the probing scripts
droopescan [65] for WordPress and Drupal, and joomscan [66] for Joomla, for this
dataset.

Researchers can utilise the template script to tweak the attack profile and create bespoke
assaults utilising other vectors. The source IP address, source port, destination IP address,
destination port, protocol, and the day both of the profiles were formed are used to
distinguish between an attack profile and a benign profile. Furthermore, any destination
addresses in the Alexa list are considered benign for determining benign traffic.

Processing of Dataset

Tcpdump with complete packet capture was used to capture the traces. In terms of
background traffic, we fully collected everything but anonymized it to protect our clients'
privacy. We employed a Crypto-PAn-based method to maintain privacy [67]. There are
multiple files in the whole dataset: pcap files from background traffic and synthetic assaults.
Downloads of the flowmeter files in pkl and CSV are available [68]. Figure 3 depicts the
preprocessing route from pcap files to CSV files.

Figure 3: The HIKARI-2021 dataset's preparation flow.

Selection of Candidate

Nazca operates by combining data from a variety of sources. Nazca evaluates the set of all
metadata records acquired during a certain time period T in the candidate selection stage.
The candidate selection process can be repeated on a regular basis, evaluating the
connections in T chunks. Alternatively, a sliding window of length T could be kept. This

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 81

step's purpose is to generate a candidate set with questionable connections. These are
connections that behave in ways that are usually linked with malicious download or
installation activities.

To find prospects, we employ four distinct methods. Repackaged malware, distributed
malware hosting, ad hoc harmful domains, and the usage of malware droppers are all
covered by these four strategies. Our algorithms are intended to be quick so that they can
handle enormous datasets. Of course, we can't expect a single approach to be able to manage
all types of malware distribution. Our experiments, on the other hand, show that the
combination of our strategies provides enough coverage. Furthermore, other procedures can
be quickly added if necessary.

We'll go over the filtering strategies in more depth now. Keep Figure 1 handy as a guide to
deciphering the numerous symbols on the graphs that go with them.

File Mutation Detection

Our initial detection system catches malware developers trying to get around antivirus
signatures. Malware writers regularly alter their files to prevent signature-based detection at
the end host. This is usually accomplished by packaging the basic malware software with
each repetition using a new (encryption) key. Server- side polymorphism refers to the process
of developing and providing a new variation of a malware programme (or family). Malware
developers can also create a series of harmful executables and deliver each request with a
new one.

Figure 4: Throughout the publication, there is a legend to help you read the graphs.

Our method for detecting file modifications (also known as server-side polymorphism)
searches for download records that are I connected with a single URI and (ii) download more
than n distinct files (determined by the hashes of the files). Later, we'll talk about how to
choose an appropriate n threshold. The wonderful thing about this method is that as cyber
criminals try harder to avoid being caught by antivirus signatures, our technique becomes
more capable of detecting such behaviour.

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 82

Cacaoweb.org is an example of a malicious website that employs this method, since it
contains URIs that serve an executable that changes every few hours (and is still operating at
the time of writing). Other examples are the domains www.9530.ca, www.wgcqsf.com, and
585872.com. All three sites use the /dlq.rar URL route, which carries malware that targets
Internet Explorer.

This example is particularly interesting because it demonstrates how malware distributors are
attempting to evade antivirus signatures not only by repackaging their malware (thus exposing
themselves to detection by our technique), but also by using multiple domains to achieve
robustness against blacklisting and take-downs, a behaviour that our subsequent techniques
handle.

Malware distributors often have a small number of URLs (sometimes only one) providing
executables from each of their domains. Genuine CDNs, on the other hand, have massive
directory structures. This discrepancy is interpreted as a sign of hostile intent. Malware
distributors may, with some effort, imitate this component of a legal CDN. However, we
discovered that this was a rare occurrence. We count all URIs across all domains in the
cluster and divide by the number of domains for this characteristic.

Figure 5: Candidates are chosen using the Distributed Hosting method

Detection Methodology

The ultimate result of Nazca's candidate selection phase is a list of URIs that have been
picked by one (or more) of our candidate selection algorithms because they have displayed
some suspicious behaviour. These algorithms are designed to efficiently filter the bulk of
benign traffic; nevertheless, due to a lack of contextual information, they occasionally
misclassify benign traffic as suspicious.

http://www.9530.ca,
http://www.wgcqsf.com,

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 83

We use the size of our dataset, in particular the fact that it frequently contains multiple
clients' interactions with various components of a malware distribution infrastructure (which
may span multiple hosts and domains), to eliminate false positives and direct security
administrators' attention to large malware campaigns. If Nazca is successful in gathering a
sufficient number of these exchanges, the whole structure of these viral dissemination
services, as well as their connections, will be disclosed. When one (or more) malicious
distribution services are bundled together, they form a "malicious neighbourhood," which is
a collection of domains, hosts, executable files, and URLs that define and comprise one (or
more) malicious distribution services.

Figure 5 is an example of a fully malevolent neighbourhood. We have multiple customers
here that download a variety of malicious executables from a number of sources, which are
housed on a variety of servers. They are being turned into zombies by the virus they are
installing. These clients connect to a number of IP addresses and download their instructions
to accept commands from the botnet's C&C server. When we operate on a single connection
or single host level, the full structure of the malicious infrastructure is not evident.

Finally, the malware economic environment is complicated, and cybercriminals prefer to
specialise in providing a certain service [6]. Some, for example, concentrate on infiltrating
hosts and selling their bots. Others buy bots and utilise them as a platform for sending spam.
Others create exploits that are marketed to individuals looking to infect computers. Clients
that connect domains associated to attackers who infect machines are expected to appear
in the harmful neighborhood graph. Following that, we find infected devices connecting to a
new set of domains, ones that are tied to the malware's C&C infrastructure.

We create harmful neighborhood graphs for each candidate obtained by the candidate
selection stage in this detection step. If a candidate is malicious, there are likely to be
additional malicious candidates in the same graph, belonging to the same harmful
neighbourhood (as we have empirically proven). We next compute a confidence score for
each candidate based on its chance of being malicious using this graph. This score is
determined by the number of other candidates on the same graph and their proximity to the
input candidate.

Applying Principles into Practice

We offer a methodology for adversarial malware categorization and detection based on the
ideas outlined above, which is emphasised in Figure 1 and detailed below. First, we look to
see if the assaults contain any helpful information that may be integrated via suitable
preprocessing (according to Principle 1).

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 84

Figure 6: The adversarial malware protection architecture in action.

An ensemble of classifiers fili=1 trained from a random subspace of the original feature space
is suggested (according to Principle 3). To harden each classifier fi, three countermeasures
are used: input transformation via binarization (as per Principle 4); adversarial
training/regularization models on attacks using Adam optimizer (dot arrows in Figure 1, as
per Principles 2 and 5); and semantics preservation via encoder and decoder (as per

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 85

Principles 2 and 5). (according to Principles 2 and 5). (as stated in Principle 6) We use block
coordinate descent to learn classifier fi and use it to optimise numerous components of the
model in order to accomplish adversarial training while maintaining semantics.

Experiments on Attacks and Classification Results

We propose threat models based on whether the attacker uses grey-box or white-box assaults,
as well as limits on the manipulation set of the attacker.

White-box vs. grey-box Attacks. We look at two different assault scenarios. I Grey-box
attacks: In this scenario, we recreate the AICS'2019 Challenge organisers' attack scenario.
That is, the attacker knows the dataset and feature set, but not the learning technique used
by the defence. A surrogate classifier is used by the attacker to produce adversarial instances.
On the training set, we use a surrogate model with two fully-connected hidden layers (200
neurons each layer) to learn the model. (ii) White-box attacks: In this scenario, the attacker
has complete control over the malware detection system. As a result, the adversarial
instances are created straight from the malware detector.

Constraints on Manipulation We consider both incremental and decremental operations with
an APK. To prevent detection, the attacker can use incremental modification to inject some
items (for example, activity) into an APK example. The attacker can use decremental
manipulation to hide particular items (for example, activity) and evade detection. In any
scenario, the dangerous functionality of the virus from which the adversarial example is built
should be preserved.

The attacker can inject some manifest features (e.g., seek extra rights and hardware, state
additional services, Intent-filter, etc.) while using incremental manipulations. However,
other components, such as content-provider, are difficult to put since an APK example would
be corrupted if the URI is missing. A dead function or class (that is never used) containing
specified system APIs can be injected into the.dex file without ruining the APK example.
String injection (e.g., IP address) can also be done using similar methods.

The metadata in the xml files in the APK can be modified if the attacker performs
decremental operations (e.g., package name). However, because an activity may represent a
class implemented in the.dex code, it is hard to completely delete it. However, we can
rename an activity and alter its necessary information (e.g., activity label) while keeping in
mind that the accompanying components in the.dex must be updated as well. Other
components (e.g., service, provider, and receiver) can be updated in the same way, as can
resource files (e.g., pictures, icons). Developer-defined method and class names in dexcode
might be changed as well. It's important to note that the relevant statement, instantiation,
reference, and announcements should all be updated. Furthermore, encryption may be used to
obfuscate user-specified strings, with the cipher- text being decoded at runtime. Furthermore,
the attacker can use Java reflection and encryption to mask public and static system APIs.
The example in List 1 demonstrates this. All of the aforementioned tweaks just obscure an
APK without altering its functionality.

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 86

Mapping Manipulation to future space, The aforementioned alterations change static
Android features like API calls and manifest file components. The Drebin feature space can
be perturbed in two different ways. I The adding of a feature. The attacker can change the
feature values of applicable objects, such as components (e.g., activity), system APIs, and IP
address, by flipping '0' to '1'. (ii) The loss of a feature. The attacker can change the value of '1'
to '0' by removing or concealing things (e.g., activity, APIs.) Table 2 outlines our Drebin
feature space alterations. We see that neither feature addition nor removal may be done to S6
since these features are dependent on S2 and S5, which means that changes to S2 or S5 may
result in changes to S6 features.

Experimental Results

When there are no hostile attacks, the defense framework's effectiveness.

Table No. 1: Classification Results
Defense FNR (Per) FPR(Per) Accuracy (Per)
DNN Basic 3.721 0.410 99.30
Adverbial Training 3.331 1.881 98.51
Regularization 4.612 0.193 99.30
DAE 3.314 0.461 99.16
AT & DAE 3.712 1.791 98.23
Ensemble AT & DAE 2.552 0.532 98.10

Adversarial Attacks in the Absence of Adversarial Attacks. Table 3 highlights the test set's
classification outcomes, which are quantified using the conventional metrics of False
Negative Rate (FNR), False Positive Rate (FPR), and classification Accuracy (i.e., the
proportion of properly categorized test cases) [62]. We find that Adversarial Training has a
lower FNR (0.438 percent lower) but a greater FPR when compared to the Basic DNN (1.457
percent higher). DAE, AT+DAE, and Ensemble AT+DAE all have a similar trend.

This can be explained as follows: by injecting adversarial malware examples into the training
set, the learning process causes the model to search for malware examples over a larger area,
resulting in a decrease in FNR and an increase in FPR, and thus a slight drop in classification
accuracy (1.74%). Adversarial Regularization has a classification accuracy that is equivalent
to Basic DNN, but it has the greatest FNR among the classifiers we looked at. DNN is
regularised using modest perturbations applied to both benign and malicious data, which
causes this.

Conclusion

To review and compare IDS, it's vital to have publicly available, up-to-date information,
especially since network traffic varies over time. This research provides two significant
contributions. To begin, we defined a new criterion for developing new datasets that aren't
included in existing datasets, such as anonymization, payload, ground-truth, encryption, and a
plausible method for doing it. Anonymizing specific data will alleviate privacy concerns, but

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 87

collecting data with the payload will improve the amount of data we can collect for detecting
harmful activities in encrypted communication. It's vital to supply ground-truth data so that
the dataset doesn't contain any unlabeled assaults.

Despite the fact that most current traffic employs encrypted communication to deliver
assaults, we have been concerned about the paucity of existing datasets including encrypted
traffic. Second, we produced the HIKARI-2021 IDS dataset, which contains encrypted
network activity traces. The datasets were constructed utilising a mix of ground-truth data
that wasn't available in the IDS databases at the time.

The datasets are accessible for free [68]. As a starting point, we employed over 80 features
from CICIDS-2017, including a source IP address (origin), source port (originp), destination
IP address, and destination port. Each flow was categorised as benign or malicious, with
benign flows being divided into two categories (Benign or Background) and malicious flows
being divided into four (Bruteforce, Bruteforce-XML, Probing, and XMRIGCC
CryptoMiner).

We want to emphasise what differentiates our dataset apart from others in the IDS. This is
based on the ideal specifications we've laid down. The first stems from content requirements,
such as comprehensive capture, for which we provide all traces (e.g., background traffic,
benign, and attack) as pcap files; the payload is provided with the exception that we
anonymize the background traffic, which is required to protect privacy.

The ground-truth and labels are manually evaluated based on the source IP address, source
port, destination IP address, destination port, and protocol. This technique assures that
unlabeled assaults do not affect the ground truth. The final need is encryption. This is one of
the most pressing requirements, since we know that unknown hostile traffic employs a variety
of attack vectors in its attacks.

The process is the second requirement. Its goal is to ensure that researchers can build their
datasets according to the criteria. It should be feasible to learn how to develop synthetic
attacks as well as network configurations. Scripts were provided for collecting and
producing synthetic attacks from the attack profile. There are technology that can mimic
human interaction, such as browsing and clicking random links.These two profiles, the
attack profile and the benign profile, are crucial for providing new data if researchers want to
add more attack routes and update the traffic with their own needs. The script for the ground-
truth data labelling technique is also given. Researchers can generate fresh datasets based on
their network configuration by following the steps in a controlled setting. In terms of
Accuracy, Balanced Accuracy, Precision, Recall, and F1, we employed four machine
learning approaches to examine the performance of the HIKARI-2021 dataset.

Reference

L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning in malware detection: Arms
race between evasion attack and defense,” in EISIC’2017, 2017, pp. 99–106.

Jonker, M.; King, A.; Krupp, J.; Rossow, C.; Sperotto, A.; Dainotti, A. Millions of targets

International Journal of Recent Advances in Information Technology & Management - Vol. 7, Issue 1 – 2023
© Eureka Journals 2023. All Rights Reserved. International Peer Reviewed Referred Journal

 Page 88

under attack: A macroscopic characterization of the DoS ecosystem. In Proceedings of
the 2017 Internet Measurement Conference, London, UK, 1–3 November 2017; pp.
100–113.

K. Sato, K. Ishibashi, T. Toyono, and N. Miyake. Extending black domain name list by using
co-occurrence relation between dns queries. In Third USENIX LEET Workshop,
2010.

T. Holz, C. Gorecki, K.Rieck, and F. Freiling. Measuring and detecting fast- flux service
networks. In Proceedings of NDSS, 2008.

T. Holz, C. Gorecki, K.Rieck, and F. Freiling. Measuring and detecting fast- flux service
networks. In Proceedings of NDSS, 2008.

Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial deep learning for
robust detection of binary encoded malware,” in 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, 2018, pp. 76–82.

Barbosa, R.R.R.; Sadre, R.; Pras, A.; van de Meent, R. Simpleweb/University of Twente
Traffic Traces Data Repository; Centre for Telematics and Information Technology,
University of Twente: Enschede, The Netherlands, 2010.

S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Make evasion harder: An intelligent
android malware detection system,” in Proceedings of the Twenty- Seventh IJCAI,
2018, pp. 5279–5283.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion,” Journal of machine learning research, vol. 11, no. Dec, pp.
3371–3408, 2010.

T. Hothorn and B. Lausen. Doublebagging: Combining classifiers by bootstrap aggregation.
Pattern Recognition, 36(6):1303–1309, 20

Ding, Y.; Zhai, Y. Intrusion detection system for NSL-KDD dataset using convolutional
neural networks. In Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence, Shenzhen, China, 8–10 December 2018;
pp. 81–85. [CrossRef]

Nasr, M.; Bahramali, A.; Houmansadr, A. Deepcorr: Strong flow correlation attacks on tor
using deep learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 1962– 1976. [CrossRef]

Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, and F.
Roli, “Yes, machine learning can be more secure! a case study on android malware
detection,” IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 4,
pp. 711–724, July 2019

Z. Qian, Z. Mao, Y. Xie and F. Yu. On networklevel clusters for spam detection. In
Proceedings of the USENIX NDSS Symposium, 2010.

